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Abstract. We consider a non-standard method that has been used for solving parabolic heat equations, but never 

to solve hyperbolic equations describing oscillatory processes. This technique was developed by Abraham Temkin 

(1919-2007) in the 1960s and the concept summary is described in the monograph by A. Temkin, “Inverse Methods 

of Heat Conduction”, Moscow: Energija Press, 1973; 464 p. (in Russian). The method is based on the fact that for 

non-stationary heat conduction with non-stationary boundary conditions, the influence of initial conditions on the 

temperature distribution decreases. And after a while, one can assume that the temperature distribution is 

determined only by a change of boundary conditions over time. Hyperbolic equations have the same property, so 

it is useful to check whether this method applies to hyperbolic equations. When applying Temkin’s method, we 

seek a solution in the form of a series where each term is a product of a derivative of the given boundary condition 

and an unknown function P of a space variable. Plugging the series into the given differential equation yields a 

system of ordinary differential equations. When solving this, we find the spatial functions P. Further, we compare 

the classical solution with the solution obtained by this method. The spatial functions are either polynomials or 

expressions that contain a polynomial as an addend, depending on the geometry of the domain and the type of the 

boundary conditions. Such a solution allows us to formulate the inverse problem to find the speed of propagation, 

knowing amplitudes of oscillations at an intermediate point of the domain. The method proposed here allows us 

to obtain simple formulas for approximate solution of the inverse problem.  

Keywords: hyperbolic equation, non-standard method, direct problem, inverse problem. 

Introduction 

This paper deals with the direct problem for hyperbolic equation and the inverse problem of 

determination of the speed of the propagation coefficient which describes the characteristics of the 

environment in which the oscillations occur. There are many situations when this unknown coefficient 

cannot be measured directly. Thus, some mathematical techniques are required to estimate the wave 

speed indirectly. Many authors have studied the coefficient inverse problems for hyperbolic equations, 

and a number of approaches have been proposed and developed, e.g. [1-7]. These techniques have 

various practical applications in many areas of science like geoscience, physics and engineering. For 

example, Goncharskii and Romanov [3] consider two approaches for solving coefficient inverse 

problems. The methods developed there are intended to find inhomogeneities in homogeneous media 

and can be applied for solving problems in medical diagnostics, in acoustics and seismology, etc. (see 

[3] for more). 

In this work, our attention is concentrated on the case when waves propagate in a one-dimensional 

medium with a periodic boundary condition imposed. The geometry of the environment is chosen as 

simple as possible to provide the simplest mathematical model of the process. The same kind of 

approach was used by A. Temkin [8] for different types of inverse problems. 

The first section covers the model of a direct problem when using Temkin’s method to solve the 

given problem. In the second section it is suggested how to use this solution in determining the speed of 

propagation. That is an inverse problem, where the coefficient can be determined on the basis of some 

experimental measurements, for example, from internal measurements of the amplitudes of oscillations. 

Instead of experimental data, we use the results of the classical model of wave equation solved by the 

Fourier method, as in [9; 10]. Lastly, some numerical results are presented. 

Mathematical model of direct problem 

Suppose that the wave propagation with 𝑎 as the speed of propagation is described by this 

homogeneous one-dimensional wave equation 

 
𝜕2𝑢

𝜕𝑡2  =  𝑎2 𝜕2𝑢

𝜕𝑥2  , 𝑥 ∈ (0, 𝑙), 𝑡 >  0  (1) 

where the following conditions are prescribed: for the initial conditions we have 
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 𝑢(𝑥, 0) =  0, 
𝜕𝑢

𝜕𝑡
(𝑥, 0) =  0, 𝑥 ∈ (0, 𝑙) (2) 

and the boundary conditions state that 

 𝑢(0, 𝑡) =  0, 𝑢(𝑙, 𝑡) =  𝑢1(𝑡), 𝑡 >  0  (3) 

We are going to reformulate the problem (1)-(3) in terms of non-dimensional variables. So, we 

introduce a new coordinate 𝜉 instead of 𝑥 , and 𝜏 instead of 𝑡 : 

 𝜉 =  
𝑥

𝑙∗, 𝜏 =  
𝑡

𝑡∗, 𝑣(𝜉, 𝜏) =  
𝑢(𝑥,𝑡)

𝑢∗  (4) 

In dimensionless variables (4), equation (1) reads as 

 
𝜕2𝑣

𝜕𝜏2  =  
𝑎2(𝑡∗)2

(𝑙∗)2

𝜕2𝑣

𝜕𝜉2. 

This suggests choosing 𝑡∗ =  
𝑙∗

𝑎
, so that 

𝑎2(𝑡∗)2

(𝑙∗)2  =  1. For 𝑙∗ we are going to take the length of the 

interval, i.e., 𝑙∗ =  𝑙. Now the problem becomes: 

 
𝜕2𝑣

𝜕𝜏2  =  
𝜕2𝑣

𝜕𝜉2, 𝜉 ∈ (0,1), 𝜏 >  0  (5) 

where 𝑣(𝜉, 𝜏) satisfies the initial conditions: 

 𝑣(𝜉, 0) =  0, 
𝜕𝑣

𝜕𝜏
(𝜉, 0) =  0, 𝜉 ∈ (0,1) (6) 

and the boundary conditions: 

 𝑣(0, 𝜏) =  0, 𝑣(1, 𝜏) =  
𝑢1(𝑡)

𝑢∗ ≡ 𝑣1(𝜏), 𝜏 >  0  (7) 

Temkin’s method begins (as described in [8] and used in [11; 12]) by assuming a separable solution 

of the form 

 𝑣(𝜉, 𝜏) =  ∑ 𝑃𝑛(𝜉)𝑇𝑛(𝜏)∞
𝑛 = 0  (8) 

where 𝑇𝑛(𝜏) represents the 𝑛𝑡ℎ derivative of the given boundary condition at 𝜉 =  1 , i.e., 

 𝑇𝑛(𝜏) =  (𝑣1(𝜏))
(𝑛)

 or 
𝜕𝑛𝑣1(𝜏)

𝜕𝜏𝑛  

but 𝑃𝑛 are unknown functions depending on the space variable 𝜉 . Formula (8) does not contain the 

initial conditions although (1) admits a unique solution if and only if the initial conditions are in the 

form (2). When applying this method, the initial conditions are used and those are 

𝑣(𝜉, 0) =  ∑ 𝑃𝑛(𝜉)𝑇𝑛(0)

∞

𝑛 = 0

 

𝜕𝑣

𝜕𝜏
(𝜉, 0) =  ∑ 𝑃𝑛(𝜉)

𝜕𝑇𝑛

𝜕𝜏
(0)

∞

𝑛 = 0

 

So, 

𝜕𝑣

𝜕𝜏
(𝜉, 0) =  ∑ 𝑃𝑛(𝜉)𝑇𝑛 + 1(0)

∞

𝑛 = 0

 

Plugging the form (8) into the wave equation (5), the partial differential equation is transformed 

into ordinary differential equations for 𝑃𝑛(𝜉), and after imposing the boundary conditions (7), they give 

 𝑃0(𝜉) =  𝜉 

𝑃1(𝜉) =  0 

𝑃2(𝜉) =  
𝜉3

6
−

𝜉

6
 

𝑃3(𝜉) =  0 
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𝑃4(𝜉) =  
𝜉5

120
−

𝜉3

36
 +  

7𝜉

360
 

𝑃5(𝜉) =  0 

𝑃6(𝜉) =  
𝜉7

5040
−

𝜉5

720
 +  

7𝜉3

2160
−

31𝜉

15120
 

 𝑃7(𝜉) =  0 etc. (9) 

The dimensionless solution to (5)-(7) is 

𝑣(𝜉, 𝜏) =  
𝑢(𝜉 ⋅ 𝑙, 𝑡)

𝑢∗
 =  ∑ 𝑃𝑛(𝜉)

∞

𝑛 = 0

⋅
1

𝑢∗
⋅

𝜕𝑛𝑢1(𝑡)

𝜕𝑡𝑛
⋅ (𝑡∗)𝑛 

Therefore, we have a solution of (1) -(3): 

 𝑢(𝑥, 𝑡) =  𝑢(𝜉 ⋅ 𝑙, 𝑡) =  ∑ 𝑃𝑛(𝜉)∞
𝑛 = 0 ⋅ 𝑢1

(𝑛)
(𝑡) ⋅ (

𝑙

𝑎
)

𝑛
 (10) 

As the convergence of the series is not considered in this paper, further investigation must be done 

on the subject. 

We shall assume that the boundary condition at 𝑥 =  𝑙 is periodic and defined as 

 𝑢(𝑙, 𝑡) =  𝐴 sin(𝜔𝑡) (11) 

Using formulas given in [9; 10], the problem (1)-(3) with boundary condition (11) has a solution: 

    𝑢(𝑥, 𝑡) =  𝐴
sin

𝜔𝑥

𝑎

sin
𝜔𝑙

𝑎

sin 𝜔 𝑡 +   

  +   
2𝐴𝜔𝑎

𝑙
∑

(−1)𝑘−1

𝜔2−(
𝑘𝜋𝑎

𝑙
)

2
∞
𝑘 = 1 sin

𝑘𝜋𝑎𝑡

𝑙
sin

𝑘𝜋𝑥

𝑙
, 𝜔 ≠

𝑘𝜋𝑎

𝑙
 (12) 

The difference between these two solutions obtained by both methods is given in Fig. 3. 

Mathematical model of inverse problem 

The inverse problem is formulated as a coefficient inverse problem – we want to determine the 

speed of propagation 𝑎 , knowing amplitudes of oscillations (for example, from experimental data) at 

an intermediate point of the domain. Let us call this point 𝜉∗, where 𝜉∗ ∈ (0,1). 

To obtain the solution using Temkin’s method, we used an infinite sum in expressing it, i.e., (10). 

When taking a finite number of terms from the series, the approximate solution is obtained. This can be 

written as 

 𝑢(𝜉∗ ⋅ 𝑙, 𝑡) =  ∑ 𝑃𝑛(𝜉∗)𝑀
𝑛 = 0 ⋅ 𝑢1

(𝑛)(𝑡) ⋅ 𝑑𝑛, where 𝑑 =  
𝑙

𝑎
 (13) 

Solving this equation for 𝑎2 with different numbers of terms in the series might result in useful 

approximation of the speed of propagation 𝑎 . The approximation of 𝑎2 might become better and better 

as more and more terms are included. 

Starting with 𝑀 =  2 in (13) produces 

𝑃0 (𝜉∗)𝑢1(𝑡) +  𝑃1(𝜉∗)𝑢1
′ (𝑡)𝑑 +  𝑃2(𝜉∗)𝑢1

′′(𝑡)𝑑2 =  𝑢(𝜉∗𝑙, 𝑡) 

As 𝑃1(𝜉∗) =  0 (see (9) for more), this yields a linear equation for 𝑑2. After solving the obtained 

linear equation, we receive the first approximation to 𝑎2: 

 𝑎2 =  
𝑙2𝑃2(𝜉∗)𝑢1

′′(𝑡)

𝑢(𝜉∗𝑙,𝑡)−𝑃0(𝜉∗)𝑢1(𝑡)
 (14) 

Given an approximate expression of 𝑎2, a closer approximation can be found by increasing the 

terms in the sum (13). If 𝑀 =  4 , the truncated sum reduces to 

𝑃4(𝜉∗) ⋅ 𝑢1
(4)(𝑡) ⋅ 𝑑4 +  𝑃2(𝜉∗) ⋅ 𝑢1

′′(𝑡) ⋅ 𝑑2 +  𝑃0(𝜉∗) ⋅ 𝑢1(𝑡) =  𝑢(𝜉∗𝑙, 𝑡) 

With notation 𝑏 =  𝑑2, this equation becomes quadratic 
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 𝑃4(𝜉∗) ⋅ 𝑢1
(4)

(𝑡) ⋅ 𝑏2 +  𝑃2(𝜉∗) ⋅ 𝑢1
′′(𝑡) ⋅ 𝑏 +  𝑃0(𝜉∗) ⋅ 𝑢1(𝑡) =  𝑢(𝜉∗𝑙, 𝑡) (15) 

the solution to which is 

 𝑏 =  
−(𝑃2(𝜉∗)⋅𝑢1

′′(𝑡)) ± √(𝑃2(𝜉∗)⋅𝑢1
′′(𝑡))

2
−4𝑃4(𝜉∗)⋅𝑢1

(4)
(𝑡)(𝑃0(𝜉∗)⋅𝑢1(𝑡)−𝑢(𝜉∗𝑙,𝑡))

2𝑃4(𝜉∗)⋅𝑢1
(4)

(𝑡)
  (16) 

with 𝑏 =  
𝑙2

𝑎2. As formula (15) is quadratic polynomial of second order, it may have 0 or 2 real 

roots. You choose the one that is closer to (14). To obtain a better approximation, more terms should be 

included in the truncated sum. 

Results and discussion 

We have obtained some numerical results for the direct problem (1) - (3) with boundary condition 

(11) using solutions (10) and (12), and for the inverse problem as well. In the numerical experiment, we 

chose these parametric values: 𝑎 =  0.01 
𝑚

𝑠
, 𝑙 =  0.02 𝑚 , 𝐴 =  2 , 𝜔 =  0.01 and considered the 

problem on the time interval 𝑡 ∈ [0.650]. 

First, those in Fig. 1 are the functions 𝑃𝑛(𝜉) dependent on the dimensionless spatial variable 𝜉 ∈
[0,1]. As you can see in the graphs below, these functions approach zero, as 𝑛 becomes larger. 

Fig. 1. Functions 𝑃𝑛 

Now consider the function 𝑢(𝑥, 𝑡) graphed in Fig. 2. This is the solution of the initial boundary 

value problem when taking the first seven terms in the sum (10). 

 

Fig. 2. Solution of direct problem using Temkin’s method 
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The graph of the function (10) has the same shape as the graph of the function (12), which is the 

classical solution. When comparing the two we used the difference between these two solutions: 

 

Fig. 3. Difference between solutions (10) and (12) 

Lastly, Table 1 presents some information on the inverse problem when determining the coefficient 

of speed propagation for 𝑡 =  500 and calculating the percent relative error. 

Table 1 

Approximation for 𝒂𝟐, percent relative errors 

Spatial coordinate Relative error using (14), % Relative error using (16), % 

𝜉∗ =  
1

4
 or 𝑥∗ =  

𝑙

4
 0.004541650089739  1.896810481035946 ⋅ 10−7 

𝜉∗ =  
1

2
 or 𝑥∗ =  

𝑙

2
 0.004166662416990  1.693541953808747 ⋅ 10−7 

𝜉∗ =  
3

4
 or 𝑥∗ =  

3𝑙

4
 0.003541679657014  1.384199151783713 ⋅ 10−7 

Conclusions 

Even the method developed by A. Temkin has never before been used for hyperbolic equations, the 

results show that it can be applied to wave equations as well. You can use the series for the inverse 

problem as well. However, there is a need for further investigation to cover some additional topics that 

were not addressed in this paper. For example: 

1. The convergence of the series (10) must be shown. 

2. The root-finding procedure for determining the approximation of 𝑎2 should describe which of the 

real roots of the polynomial is the right one and what appropriate steps should be taken in the case 

of complex roots. 

3. The considered method is not well known and there is no information on this method being used by 

scientists living abroad. An advantage of this method is that it is much simpler compared to other 

methods that are used for solving inverse hyperbolic equations. 
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